首页 >> 知识 >> 自动驾驶事故频发,安全痛点在哪里?

自动驾驶事故频发,安全痛点在哪里?

近日,武汉城市留言板上出现了多条关于萝卜快跑的投诉,多名市民反映萝卜快跑出现无故停在马路中间、高架上占最左道低速行驶、转弯卡着不动等情况,导致早晚高峰时段出现拥堵。萝卜快跑是百度 Apollo全新升级的自动驾驶出行服务平台,于 今年 5 月 15 日正式亮相武汉。

自动驾驶技术的概念诞生于 20 世纪,1995 年,美国卡内基梅隆大学的“Navlab” 项目首次实现了自动驾驶车辆在城市道路上行驶,但受制于当时的技术的原因,当时的技术还相对比较原始。进入 21 世纪后,随着传感器和算法的突破,计算机技术的不断进步,自动驾驶技术取得了重要突破。尤其是 2023 年以后,自动驾驶技术进入了高度自动化阶段。一些汽车制造商推出了配备“高级驾驶辅助系统(ADAS)”的汽车,实现了在特定条件下的自动驾驶。

尽管自动驾驶技术进入到了高度自动化阶段,然而,这一阶段依然需要驾驶员时刻保持警惕,以应对突发情况。近年来,关于自动驾驶汽车事故的报道也经常见报,技术在完全成熟和试验阶段,难免会出现很多问题,甚至会带来生命财产损失。

四大常见原因揭秘

数据猿梳理了自 2023 年以来至今,全球公开报道中智能驾驶汽车发生事故的原因。在过去四年多的事件中,全球范围内发生了数百起涉及智能驾驶汽车的事故,事故涉及到的汽车品牌主要包括:特斯拉、小鹏、蔚来、理想、Waymo、Cruise、百度 Apollo等,如果按照事故发生的原因对这些事故进行分类,大致可以分为四类:传感器感知系统缺陷、算法决策失误、系统控制失灵、驾驶员误操作。

传感器感知系统缺陷类。传感器感知系统是智能驾驶汽车获取周围环境信息的关键部件,如果出现故障或缺陷,会导致汽车无法正确识别障碍物或道路情况,从而引发事故。比如:2023年8月,美国一辆特斯拉Model Y在自动驾驶模式下撞上了一辆停靠在路边的卡车,事故原因是特斯拉的Autopilot系统未能识别卡车的存在。同样原因的事故也曾发生在中国,2023年7月,中国一辆广汽蔚来EC6在自动驾驶模式下撞上了一辆宅男在线观看网址,事故原因是蔚来汽车的NOP系统未能识别宅男在线观看网址的存在。

算法决策失误类。智能驾驶汽车的决策系统是基于大量数据训练而成的,如果训练数据存在偏差或算法本身存在缺陷,会导致汽车做出错误的决策,从而引发事故。例如:2023年11月,美国一辆Waymo自动驾驶出租车在测试过程中突然加速,导致与一辆其他车辆发生碰撞,事故原因是Waymo汽车的制动系统出现故障。小鹏汽车也曾出现类似状况,2023年4月,一辆小鹏P5在自动驾驶模式下撞上了一辆宅男在线观看网址,事故原因是小鹏汽车的XPILOT系统错误地将宅男在线观看网址识别为车道线。

系统控制失灵类。智能驾驶汽车的控制系统负责执行决策系统的指令,如果出现故障或失灵,会导致汽车无法按照预期的轨迹行驶,从而引发事故。2023年1月,美国一辆特斯拉Model S在自动驾驶模式下突然转向,导致撞上路边一棵树,事故原因是特斯拉汽车的转向系统出现故障。同样的,2023年5月,中国一辆理想ONE在自动驾驶模式下发生失控,导致撞上路边石墩,事故原因是理想汽车的ONE系统出现故障。

驾驶员误操作类。驾驶员对于自动驾驶系统存在误解或操作不当时,也容易引发驾驶事故。例如:2023年4月,美国一辆特斯拉Model 3在自动驾驶模式下追尾了一辆摩托车,导致摩托车驾驶员当场死亡,事故原因是驾驶员在使用Autopilot系统时没有保持注意力。2023年2月,中国一辆蔚来ES8在自动驾驶模式下发生碰撞,事故原因是驾驶员在系统发出接管车辆指令时没有及时响应。

通过以上对于自动驾驶事故的分类和总结可以看出,安全的自动驾驶既需要强大的硬件系统做支撑,也需要软件系统的不断升级,同时还需要对驾驶员进行一定的驾驶教育。

技术演进的“今生”与“来世”

如果把自动驾驶比作“司机”,那么传感器感知就像司机的“五官”,系统控制就像司机的“四肢”,算法决策就像司机的“大脑”。如果想把这些软件和硬件的功能升级到像人体这样灵活,确实是件非常困难、复杂的工作。

在传感器感知方面,自动驾驶需要传感器感知周围的环境信息,包括障碍物、车道、交通信号灯等。目前常用的传感器主要有摄像头、雷达和激光雷达,然而单一的传感器很难完成感知识别的任务。比如:摄像头可以获取高分辨率的图像信息,但是容易受到光照条件的影响,比如夜间或者强光照射下,摄像头的成像效果就会变差,而雷达虽然可以穿透雾霾、雨雪等恶劣天气,但是探测精度低,难遇区分不同类型的障碍物……

目前,因此为了克服单一传感器的局限性,自动驾驶汽车通常采用多传感器融合方案,通过综合分析来自不同传感器的信息,提高感知的准确性。例如,利用摄像头识别交通信号灯,同时用雷达探测前方车辆,再结合激光雷达获取的三维点云数据,构建完整的道路环境模型,为后续的决策控制提供可靠依据。虽然感知的问题解决了,但是也带来了较高的成本,因此在传感器感知方面,目前面临的问题就是如何降低成本,而降低成本的方式有两种,一是现在感知工具的制造成本降低,二是研发新型传感器,比如固态激光雷达、毫米波雷达等。目前,奥迪威在超声波雷达领域已经具备成熟技术,华为也在激光雷达领域有所布局。

在获取了周围环境的信息后,自动驾驶需要做出相关的决策,这时决策算法就成为核心技术之一。它需要根据感知信息做出合理的决策,包括路径规划、避障决策、交通规则遵守等。决策算法需要满足三个要求:安全性、效率性和实时性。安全性是保证车辆安全行驶,效率性是保证车辆能高效的行驶,实时性是保证车辆能实时做出决策,满足行驶需要。

目前,自动驾驶汽车的决策算法主要采用基于规则的算法和基于学习的算法。前者是根据人类驾驶经验和交通规则来制定决策的,具有较强的可解释性,例如,在遇到红灯时,车辆应该停止行驶;后者是通过机器学习来训练决策模型的,具有较强的泛化能力,例如,算法可以根据以往的驾驶数据,学习如何在复杂路况下做出合理的决策。然而决策算法的智能化其实并非易事,如果想要提升决策算法的能力,一是需要

网站地图